ppt文档 第十章-对坐标的曲线积分

专业资料 > 自然科学 > 数学 > 文档预览
29 页 85 下载 971 浏览 18 收藏 4.7分

摘要:第二节对坐标的曲线积分第十章一、对坐标的曲线积分的概念与性质二、对坐标的曲线积分的计算法三、两类曲线积分之间的联系 对坐标的曲线积分yB一、问题的提出MiMn1LM实例:变力沿曲线所作的M功L:AB,AF(x,y)P(x,y)iQ(x,y)joM2yixii11x常力所作的功WFAB.分割AM0,M1(x1,y1),,Mn1(xn1,yn1),MnB.Mi1Mi(xi)i(yi)j. 取F(i,i)P(i,i)iQ(i,i)j,yBMiMn1WiF(i,i)Mi1Mi,即WiP(i,i)xiQ(i,i)yi.F(i,i)LoAMi1xiyiM2M1xn求和WWii1近似值n[P(i,i)xiQ(i,i)yi].i1n取极限Wlim[P(i,i)xiQ(i,i)yi].0i1精确值 二、对坐标的曲线积分的概念1.定义设L为xoy面内从点A到点B的一条有向光滑曲线弧,函数P(x,y),Q(x,y)在L上有界.用L上的点M1(x1,y1),M2(x2,y2),,Mn1(xn1,yn1)把L分成n个有向小弧段Mi1Mi(i1,2,,n;M0A,MnB).设xixixi1,yiyiyi1,点(i,i)为Mi1Mi上任意取定的点.如果当各小弧段长度的最大值0时, nP(i,i)xi的极限存在,则称此极限为函i1数P(x,y)在有向曲线弧L上对坐标

温馨提示:当前文档最多只能预览 7 页,若文档总页数超出了 7 页,请下载原文档以浏览全部内容。
本文档由 匿名用户2019-05-15 17:38:36上传分享
你可能在找
  • 第五节对坐标的曲面积分第十一章一、有向曲面及曲面元素的投影二、对坐标的曲面积分的概念与性质三、对坐标的曲面积分的计算法四、两类曲面积分的联系 对坐标的曲面积分一、基本概念观察以下曲面的侧(假设曲面是光滑的 )曲面分上侧和下侧曲面分内侧和外侧 曲面的分类:1.双侧曲面;2.单侧曲面.典型双侧曲面n 典型单侧曲面:莫比乌斯带 •类曲面分双侧曲面单侧曲面莫比乌斯带(单侧曲面的典型)曲面分左侧和右侧曲面分内侧和外侧曲面分上侧和下侧
    3.0 分 38 页 | 1.83 MB
  • 曲线积分与曲面积分前一章我们已经把积分概念从积分范围的角度从数轴上的一个区间推广到平面或空间内的一个区域,在应用领域,有时常常会遇到计算密度不均匀的曲线的质量、变力对质点所作的功、通过某曲面的流体的流量等 ,为解决这些问题,需要对积分概念作进一步的推广,引进曲线积分和曲面积分的概念,给出计算方法,这就是本章的中心内容,此外还要介绍Green公式、Gauss公式和Stokes公式,这些公式揭示了存在于各种积分之间的某种联系 重点第二型曲线积分与曲面积分的概念和计算方法Green公式、Gauss公式曲线积分与路径无关的条件难点第二型曲面积分的计算基本要求①正确理解曲线积分和曲面积分概念②熟练掌握曲线积分与曲面积分的计算方法
    3.0 分 31 页 | 636.00 KB
  • 第四节对面积的曲面积分第十章一、对面积的曲面积分的概念与性质二、对面积的曲面积分的计算法 一、对面积的曲面积分的概念和性质前面已经介绍了两类曲线积分,对第一类曲线积分n(i,i)siL(x ,y)dslim0i1其物理背景是曲线型构件的质量,在此质量问题中若把曲线改为曲面,线密度改为面密度,小段曲线的弧长改为小块曲面的面积,相应地得和n式lim(i,i,i)Si0i 1抽象概括得到对面积的曲面积分的概念 实例,它是若曲面光滑的的面密度为连.
    3.0 分 36 页 | 1.42 MB
  • 第周第课时教案时间:教学主题简单曲线的极坐标方程一、教学目标1、掌握极坐标方程的意义,掌握直线的极坐标方程2、能在极坐标中给出简单图形的极坐标方程,会求直线的极坐标方程及与直角坐标之间的互化3、过观察、 二、教学重点、极坐标方程的意义,理解直线的极坐标方程,直角坐标方程与极坐标方程的互化教学难点:极坐标方程的意义,直线的极坐标方程的掌握三、教学方法讲练结合四、教学工具无五、教学流程设计教学环节教师活动圆的极坐标方程一 2、直角坐标系的建立可以求曲线的方程极坐标系的建立是否可以求曲线方程?学生活动 学生回顾1、直角坐标系和极坐标系中怎样描述点的位置?
    3.0 分 6 页 | 84.02 KB
  • 我还要把羊羔身上的羊水用干草揩干,帮助羊羔尽早吃上母乳,这样就保证了羊羔的成活。看到太阳向西倾斜,按我的经验就知道过了下午五点钟了,这时就把羊群赶到水渠边让羊饮足水。 水渠里的水是从水井里抽出来的,是用来灌满水库的,整个冬天水渠里都有水,解决了羊群饮水的事情。 冬季每天都会在羊群回圈时给羊加喂玉米籽,羊群回圈之前,在家里的母亲已经把玉米添加在槽里,羊知道圈里有好吃的,回家的路上走得也很快,在距离羊圈五百米的时候,羊都开始小跑了,有的怀孕的母羊被落在后面,我就在羊群最后面收尾
    4.9 分 9 页 | 813.97 KB
  • 第二讲直角坐标系下二重积分的计算•内容提要直角坐标系下二重积分的计算•教学要求理解和熟练掌握二重积分的计算。 zf(x,y)预备知识:(1)曲顶柱体体积:Vf(x,y)dDDA(x)y(2)平行截面面积为已知的立体的体积bVaA(x)dx.oaxbx 二重积分在直角坐标系下的计算y(3)在直角坐标系下二重积分 f(x,y)dDydyyDf(x,y)dxdyDdoxxdxx 1.直角坐标系下二重积分的计算y1.对积分区域的讨论:y2(x)(1)X-型区域如果积分区域为1(x)y2
    3.0 分 32 页 | 1.28 MB
  • (惠山区玉祁第10题)如图,在四边形ABCD中,∠ABC+∠DCB=90°,E、F分别是AD、BC的中点,分别以AB、CD为直径作半圆,这两个半圆面积的和为8π,则EF的长为______________ (惠山区玉祁第18题)已知A(-1,0),B(3,0),点P为y轴上一点,且∠APB=135°,则点P的坐标是.4. (江阴初级中学第9题)在直角坐标系中,直线a向上平移3个单位后所得直线b经过点A(0,3),将直线b绕点A顺时针旋转60°后所得直线经过点B(-,0),则直线a的函数关系式为______________
    3.0 分 9 页 | 459.00 KB
  • 第八章复习:平面及直线目录上页下页返回结束 目录上页下页返回结束 第八章第五节曲面及其方程一、曲面方程的概念二、旋转曲面三、柱面四、二次曲面目录上页下页返回结束 一、曲面方程的概念【引求到两定点A(1,2,3 )和B(2,-1,4)等距离的点例】的轨迹方程.解:设轨迹上的动点为M(x,y,z),则AMBM,即22(x1)(y2)(z3)222(x2)(y1)(z4)化简得2x6y2z 70说明:动点轨迹为线段AB的垂直平分面.显然在此平面上的点的坐标都满足此方程,2不在此平面上的点的坐标不满足此方程.目录上页下页返回结束 定义1如果曲面S与方程F(x,y,z)=0有下述关系:(1
    3.0 分 29 页 | 2.02 MB
  • 第1节曲线运动学习目标1.知道什么是曲线运动。核心提炼1个条件——物体2.会确定曲线运动的位移和速度的方向,知道曲线运动是做曲线运动的条件变速运动。 1种方法——运动3.经历蜡块运动的探究过程,体会研究曲线运动的方法—的合成与分解—运动的合成与分解。2个概念——曲线4.知道物体做曲线运动的条件。 运动的位移、速度一、曲线运动的位移阅读教材第2页“曲线运动的位移”部分,知道怎样建立直角坐标系,并确定分位移与合位移的关系。1.坐标系的选择:研究物体在同一平面内做曲线运动时,应选择平面直角坐标系。
    3.0 分 30 页 | 1.19 MB
  • 它定量地描述了塑性变形过程中加工硬化增长的趋势,是金属塑性加工中计算变形力和分析变形体应力-应变分布情况的基本力学性能数据。硬化曲线的纵坐标为真应力,横坐标为真应变。 试验时某瞬间载荷与该瞬间试件承力面积之比称真应力(或真抗力,即真实塑性变形抗力)。硬化曲线可用拉伸、扭转或压缩的方法来确定,其中应用较广的为拉伸法。 根据表示变形程度的公式不同,用拉伸图计算所得硬化曲线有3种,如图1所示。第1种是S-δ曲线,表示真应力与延伸率之间的关系。第2种是S-φ曲线,是真应力与断面收缩率的关系曲线。
    4.8 分 5 页 | 98.00 KB
小学题库
本站APP下载(扫一扫)
活动:每周日APP免费下载全站文档
本站APP下载